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THE EFFECT OF RESPONSE SCALING ON THE DETECTION OF SINGULARITIES IN

MULTIRESPONSE ESTIMATION

A. I. KHURI

Department of Statistics
University of Florida
Gainesville, Florida 32611

ABSTRACT

Box and Draper (1965) introduced a criterion for the estimation of parameters from a
multiresponse model. This criterion can lead to misleading results in the presence of linear
relationships among the responses. Box et al. (1973) proposed a procedure for detecting the existence
of such relationships when the muitiresponse data are subject to round-off errors. The procedure,
however, can be adversely affected by large differences in the orders of magnitude of the responses as
well as in the units of measurement on which the responses are expressed. It is, therefore, necessary to

\ A -
scale the responses prior to the application of that procedure. In this;rticle, I dis;uss the ;ffect of
scaling on the implementation of the eigenvalue analysis by Box et al. (1973). Two numerical

examples are given for illustration. ‘e Co ' s o

KEY WORDS: Multiresponse model; Box-Draper estimation criterion; Round-off error; Linear

" dependencies; Ill conditioning; Eigenvalue analysis.
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1. INTRODUCTION

Consider the general multiresponse model

Yui = ‘_f.l (xu, 8) + i u=1,2,...,n; i=1,2,...,r, (1.1)
where
Yyui 18 the value of the i*" response at the u— experimental run,
“Ji(,\_{u, 8) is the expected value of y .,
. t
Xy is a vector of values of k input variables, denoted by X|s Xgy wony Xy, 8t the u=
experimental run,

g is a vector of p unknown parameters, and

i is a random error associated with Yuir

Let Y; and ¢ i denote, respectively, the vector of values of the i!"h response and the associated

vector of random errors (i=1,2,...,r). The multiresponse model in (1.1) can be written in the form

Y=F+g, (1.2)
where Y = [):1 Py i Yrh F is an nxr matrix whose (u,i)Lh element is ¥, (xy,8) and
e=[e1:€:ier]

According to Box and Draper (1965), estimates of the elements of § can be obtained by
minimizing the determinant, |['(9)|, of the matrix ['(4) with respect to §, where
[@=(-D(Y-B (1.3)

We refer to this method of estimation as the Box-Draper estimation criterion. Box et al. (1973)
pointed out that when linear relationships exist among the columns of Y, the matrix ['(4§) becomes
singuiar, that is, [T(8)| = 0. In practical situations, the multiresponse data are subject to round-off
errors, which cause the determinant of ['(§) to be different from zero and to change as § is changed.
Minimization of this determinant under such conditions will produce ncnsensical results (Box et al.

1973 and McLean et al. 1979).

- In order to detect singularities in T[(8), Box et al. (1973) proposed a procedure in which the
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eigenvalues of the matrix DD’ are examined, where

D =Y'(Iy - Jo/n) (14)
In (1.4), In and J, denote the identity matrix and the matrix of ones, respectively, both of order nxn.
Box et al. (1973) showed that m linearly independent relationships must exist among the responses if
and only if the matrix DD’ has a zero eigenvalue of multiplicity m. As mentioned earlier. none of the
eigenvaliues of DD' will be exactly equal to zero because of round-off errors in the multiresponse data.

Small eigenvalues of I_)I_)’ should, therefore, be examined to determine if they correspond to linear

dependencies among the responses.

If A* is a small eigenvalue of DD’, then in the presence of round-off error only and for a
sufficiently small 6, the expected value of A" is approximately equal to
E(V) = (a-1)ofe, (1.5)
where dl?e = 52/3 is the round-off error variance. Formula (1.5) is valid under the assumption that
the round-off errors are statistically independent and have the uniform distribution U(-§,6). See Box et
al. (1973). An approximate upper bound on the variance of A* was given in Khuri and Conlon (1981)

as

Var()) < [9—‘5‘—' + nt(ar-1) - (n-1)2]o‘}e. (1.6)

Formulas (1.5) and (1.6) can be used to determine whether a small eigenvalue of DD’ should
be considered as zero, an indication of a singularity in the matrix '(§) in (1.3). Box et al. (1973)
discussed possible remedies when such a situation occurs, which include dropping some of the responses

that are influential contributors to the singularity.

Quite often, the responses have different units of measurement, which cause them to have
widely different orders of magnitude. Furthermore, the round-off errors in all the responses may not be
identically distributed as U(-6.6). All of these factors can seriously affect the eigenvalue analysis
described earlier as will be seen in more detail in Section 2. To remedy this numerical inconsistency,

the responses should be scaled hefore proceeding with the eigenvalue analysis. This action will
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obviously alter formulas (1.5) and (1.6) for the expected value and variance of a small eigenvalue of

DD’. A modification of these formulas will be presented in Section 3.

2. SCALING OF THE RESPONSES AND MEASURES OF NEAR SINGULARITY

-

In a general multiresponse situation, the response variables usually have distinct physical
meanings. distinct units of measurement, and widely different values. Such scale imbalance makes it
difficult to interpret the results of the eigenvalue analysis as described in Section 1. To avoid this
difficulty, the responses must be scaled first.

Let W be an rxr diagonal matrix whose ig diagonal element, Wi is defined as

n
where Yy is the value of the im‘ response at the um experimental run and y; = 3 yui)/n' Consider
u=1

the nxr matrix S given by

o
o
=

s=yw! (

where Y is the matrix of multiresponse data in (1.2). The matrix S is a linear transform of Y, which
results from dividing the im column of Y by wi(i=1‘2,...r). It i3 known that estimates of the
parameters from the multiresponse model (1.2) are invariant under this scaling convention (see Bates

and Watts 1985, p. 330). Using (2.2) in (1.4) we obtain

D = W8'(Iy - Jn/n). (2.3)

Let us now define the rxn matrix, B, as
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B =5(ly-Jn/n). (2.4)

From (2.3) and (2.4) we have

or equivalently,
B' = (In - ln/0)YWL. (26)

We note that the columns of B’ have unit lengths and that the matrix BB’ is in correlation form.

Furthermore,

BB' = W' lpD'w-! (2.7)

Thus, when the responses are scaled as in (2.2), the matrix DD/, used in the eigenvalue analysis of Box

et al. (1973), is transformed into the matrix BB'.

In case of a singularity in the matrix ['(8) (see 1.3) and in the presence of round-off errors in
the multiresponse data, both DD’ and BB’ are near singular, that is, their determinants are close to
zero. In this case, the columns of I_)' as well as those of B/ are nearly linearly dependent, or
multicollinear. In other words, if a singularity exists in the matrix ['(8). then both D’ and B’ will

suffer from ill conditioning. Their degrees of ill conditioning, however, can be quite different.

As a measure of ill conditioning of the matrix B’ and that of D’, I use the condition numbers.

x(B’) and x(D’), respectively. By definition, the condition number of B is

1
<(B") = [ emax(BB')/e . (BB') J%
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where emax(BB') and e (BB') denote the largest and smallest eigenvalues of the matrix BBI. The

min
condition numk-: of D' is similarly defized. The larger the condition number, the more ill conditioned
the matrix. Another indicator of ill conditioning is provided by the variance inflation factors (VIF).
Since the columns of B’ are centered and scaled for unit length, the VIF's associated with this matrix
are, by definition, the diagonal elements of the matrix (BB')'I. Large VIF’s indicate ill conditioning

and can help diagnose its nature. More specifically, large VIF's correspond to responses that are

involved in the multicollinearity in the columns of B'.

It was mentioned earlier that the degree of ill conditioning of D' can be quite different from

that of B, To see this, let us consider (2.5) and the inequality given in Belsley et al. (1980, p. 182).

Then,

x(B") 2 &(D")/x(W). (2.8)

Since W is diagonal, its condition number is given by

(W) = mi’ix(w.l)/miin(wi)‘ (2.9)

where mjn(wi) and max(wi) denote, respectively, the smallest and largest of the w.’s defined in (2.1).
i i

[nequality (2.8) can be rewritten as
x(B) 2 K(D')[m‘in(wi)/m_ax(wi)]- (2.10)
1 i

If x([_)') is very large and m‘in(wi) is very small as compared to max(wi), then x(B'}) can be small.
i i

but need not be. Thus, ill conditioning can be improved by the scaling convention of (2.2), especially
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when the w-l‘s in (2.1) are widely different. As a matter of fact, this kind of scaling has “near-optimal”

properties in the sense that

x(B') < VT min|x(B'G) |, (2.11)
(") < Gc'n[‘(~ G)] {
where {2 denotes the set of all nonsingular diagonal matrices of order rxr (see Belsley et al. 1980, p.

135). In particular. from (2.5) and (2.11) we conclude that
~(B") < VTx(D"). (2.12)

Thus. «(B’) cannot be off by more than a factor of ¥T from the minimal condition number given on

the right-hand side of (2.11).

Improving the conditioning of D' through the transformation (2.5) is desirable since a severely
ill-conditiored matrix is sensitive to round-off errors in its entries (Maron 1982, p. 210). It follows that
the eigenvalue analysis of Box et al. (1973) can be safeguarded from the effects of ill conditioning by

adopting the scaling convention of (2.2). Of primary importance in that analysis is the magnitude of

the smallest eigenvalue of the matrix DD/, where D is given in (1.4). This can be quite different from
the smallest eigenvalue of BB’ as lemma 2.1 shows, especially when the w.’s in (2.1) are markedly
different.

Lemma 2.1. Let B, D, and wi(i=1,2,...,r) be defined as in (2.4), (1.4),and (2.1), respectively. Let

em‘-n(-) and emax (+) denote the smallest and largest eigenvalues of a symmetric matrix. Then,

€min(PD)
- mijn(w?) < -min 7 < max (w?) (2.13)

- ! ®min(BB")
e ‘
LR
- Proof. See Appendix A.
o /
[ ] ' .
e e In (2.13), DD/ and BB’ are computed using rounded-off response values. Consequently, both ‘
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matrices are nonsingular even when the responses are linearly dependent. From (2.13) we note that
emin(DD') can be heavily affected by extreme values of wi(i=1,2,...,r). By contrast, emin(BB’) <1

since BB’ is in correlation from (the determinant of this matrix, which is the product of its

eigenvalues, is less than or equal to one by Theorem 8.7.6 in Graybill 1983).

3. THE EXPECTED VALUE AND VARIANCE OF A SMALL EIGENVALUE OF BB’

IN THE PRESENCE OF ROUND-OFF ERRORS

In this section, the expected value and variance of a small eigenvalue of BB’ in (2.7) are
derived when round-off error is the only error present. The derived values can be used in an eigenvalue
analysis to determine whether a small eigenvalue of BB’ is in fact a zero eigenvalue in the absence of
round-off error. By (2.7), BB’ and DD/ are of the same rank. Hence, if BB/ has a zero eigenvalue,

then so does DD’, which indicates the presence of a linear relationship among the responses.

Let Yui be the exact im response value at the ut—}1 experimental run, and let Yui be the value of

Yui rounded off to a certain number of decimal places (u=1,2,...,n; i=1,2,...,r). In the presence of

round-off errors only we have the model

"
1

e
+
L
=

where Y" and Y are the nxr matrices, (y;i) and (yui)' respectively, and A is the nxr matrix (Ayui)
of rounding errors in the response values. Let ’\‘i be the vector of round-off errors for the iELI response

(i=1,2,...,r), that is,

3, = (A Aygpe e Ay sl (3.2)
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The elements of D, are assumed to be independently distributed as uniform random vanates. (-4 .

6i‘,. Thus,
2.1, 133

2 D o . . .th . .
where oy = 6;‘/3 1s the rounding error variance for the i~ respcnse. We also assume that the __X‘ s are

statistically independent. If the values from the im response are rounded off to m, decimal places.

[ -(m,+1)]
= 3010 J1=1,2,...,1.
2

Consider the scaled multiresponse data matrix § in (2.2).

then 6'1

The change, AS, in § due to round-

off errors is equal to

as =Y (Wyl-ywl, (3.4)
where W* is an rxr diagonal matrix whose im diagonal element, w:, is the value of w, that results

from using the rounded-off im response data in (2.1), i=1,2,....r. Let Sui denote the (u.i)t‘}-1 element of

S (u=1.2,...,n; i=1,2,...;r). From (2.2) this element can be written as

0 _ 2 % .
Sui = yui/ V‘L:'l(yvi - yi)“ v u=L2eon =120, 3.5
n
where . = Zlyvi/n. The right-hand side of (3.5) is a function of Y1 ¥oje oo ¥ denoted by gy,
v= - !

. N
Yoiu woes yni)’ u=12,..,n. If Asui is the (u.x)“k‘1 element of AS. then a first-order approximation o

As . is given by
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Let gs suppose "nat cn the absence of round-off error. the matrix BB 1in 2.7 has a zero
mgenvacge of men oty moo > This means that m linearly independent relationships must exist

: - '
utong Che tesponses et 1, a,. .. ayy De an orthonormal set of eigenvectors of BB’ for the

sigenvatae zeros I sne rounded-off multiresponse data matrix, Y, is used in the computation of B in

o .

. . N
25 then the matrix BB' will have m small eigenvalues. Let \J ()=1,2.....m) denote the j—h smallest

St rhese egenvalues  Theno for sufficiently smalj 8. 8q. ... & we have

AT~ dj/lASIlQIH Jp/n) \S)gjx j=1.2...m, {3.71
wtiere A8 *y are the parameters of the uniform distnbutions associated with the round-off errors

rom the r responses 1see Wilkinson 1963, p. 138; Khuri and Colon 1981, p. 372). The symbol ~ in
371 means that the two sides are of the same order of magnitude. The eigenvectors, 31 29, - 3m,
that appear in :3.71 can be approximated with 3], d9, .... 4, an orthonormal set of eigenvectors of

BB’ which correspond to Al+ A5, ..o A, respectively. We can then write

N~ &5(A8) (I - In/n)(AD)E. j=12u.m, (3.8)

Using the expression in (3.3, it can be shown (see Appendix B) that we approximately have

T
E() = (n2) Y ofad/wl, j=12..m, (3.9)

il
where 7o =A='
;

9 _ . o
T *he rounding error variance for response i (i=1.2.....r),

A
-
(SN
10
L ]
r\ :
AR
.
- .
L 2
o
.o,
L. - BN R . a . . . R . e
e A AP . [ e N - ot PRLI N .
WP AP ST O R !‘_‘A-A"“A-n..n.“\m.*‘“lnl"A;‘.L'A,“L_'.A_‘A—‘ AR




I
var () < [ 2 + n(ne1) | 2 ot
J 2 i=1 ' !
L = 212 :
+ 202 i;__‘,erirea?a% - (n-2)2\ii§10i2a%/wi} . J=1,2,...m, {3.10)

where éij is the igl element of E:I.j (i=1,2,...,r; j=1,2,...,m) and T is given by

T = [(n~1) w-l2 + nyﬂ/w?, i=1,2,...,r. (3.11)

If /\J? is of the same order of magnitude as E(/\j), then we may treat /\Jf as a zero eigenvalue
and conclude that a linear dependency exists among the responses. The elements of the corresponding
eigenvector, ., may be used to identify the linear dependency. The upper bound in (3.10), denoted by

u;, can be used to obtain the standardized values

my = [,\J: . E(,\J:)]/JTj, i=1,2,...,m. (3.12)

Large values of s clearly indicate that )‘j does not correspond to a zero eigenvalue of BB’. Small
values of 5 however, do not necessarily imply a zero eigenvalue since U is just an upper bound to the

true variance of /\j’.

4. NUMERICAL EXAMPLES

Two examples are presented in this section to illustrate the implementation of the eigenvalue
analysis described in Section 3.

4.1 Example 1

Let us consider the data on the thermal isomerization of a-pinene at 189.3°, which was
reported in Fuguitt and Hawkins (1947) and analyzed by Box et al. (1973). The data are reproduced
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in Table 1. In this example, values from the five responses have been recorded to the nearest .10, hence
61 = 62 = 63 =9y =45 = 05, where the 6i's are the parameters associated with the uniform
distributions of round-off errors. The matrix BB’ is given in Table 2 along with its corresponding
variance inflation factors and the condition number, x(B). The eigenvalues of BB, their
corresponding expected values. values of ; (see 3.12), and the matrix of orthonormal eigenvectors of

BB' are given in Table 3.

The first and second smallest eigenvalues of BB' in Table 3 are of the same order of magnitude
as their expected values. The associated values of ™ (j=4.3) are very close to zero. These two
eigenvalues can, therefore, be regarded as equal to zero. The elements of the corresponding
eigenvectors (the last two columns of the matrix in Table 3) can be used to define two linearly
independent relationships among the five responses. The third smallest eigenvalue of E}B'. namely
.0027773. is not of the same order of magnitude as E(Aﬁ). The associated 3 value, however, is
relatively small. This eigenvalue corresponds to a linear relationship among the expected values of the
responses (see Box et al. 1973, Section 6). The remaining two eigenvalues, namely .381599 and
4.11521, are much larger and have large r;j values (j=1,2). Hence, they are not associated with any

linear relationships among the responses or among their expected values.

The large variance inflation factors and condition number in Table 2 indicate that the matrix
B’ is severely ill conditioned, hence it is very sensitive to round-off errors. We note that the responses.
Y1 Yo. ¥4 and ¥g are quite involved in the linear dependencies since their corresponding variance
inflation factors are extremely large. This is also supported by an examination of the elements of the

last two columns of the matrix of eigenvectors in Table 3. In both columns. the third element. which

ez corresponds to yq, is the smallest in absolute value.
SO |
N 4.2 Example 2

Research was conducted by Ahmed et al. (1983) at the University of Flonida in order to

' develop acceptable fish patties from sheepshead harvested along the Flerida coast. Deboned and
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washed sheepshead {lesh was mixed with varying proportions of x| = sodium chloride, Xg = sodium
tripolyphosphate, and Xg = sodium alginate. Of interest was the determination of the effects of these
three input variables on the texture quality of cooked patties. This was measured by the values of four
response variables, namely, vy = breaking force in grams, Yo = texture firmness, Y3 = texture
preference, and y, = flavor. The last three responses were measured using a nine-point rating scale

with 1 being least desirable and 9 most desirable. The response values are given in Table 4.

The variance inflation factors in this example are 2.374, 28.653, 24.244, 1.768, and the
condition number of the matrix B’ is <(B') = 12.552, an indication of moderate ili conditioning. The
values of ; in (see 3.12) are n, = 1909.61, ny = 392.03, ng = 214.702, and Ny = 12.12. Hence, no

eigenvalue of BB/ can be regarded as equal to zero.

It is interesting here to note that the eigenvalues of the matrix BB’ are .0192, .3397, .6202,

and 3.0210. By contrast, the eigenvalues of the matrix DD’ for the unscaled responses are .2871,

1
6.8863, 15.8812, and 2,009, 864 with a condition number, x(D’) = (2,009,864/.2871)% = 2645.86. The
latter number greatly exceeds x(B’). This shows that scaling of the responses can improve the

conditioning of the matrix BB', which, in turn, reduces its sensitivity to round-off errors.

5. CONCLUDING REMARKS

The scaling convention proposed in (2.2) is recommended to be used prior to the application of
the eigenvalue analysis for detecting linear dependencies among the responses. Scaling removes
inconsistencies in the units of measurement by putting all response variables on a common scale. An
eigenvalue analysis applied directly to the original data, e.g., the data of Example 2 in Section 4.2, is

not always meaningful because the responses may not have the same scale.

As was observed in Example 2, round-off error can be reduced by scaling. To see this in

. . . . 2
general. we note that if the w.'s in (3.9) exceed unity and if the oi's are equal to a?e, then the
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expected value of /\Ji' is less than (n—l)age. The latter quantity is given in Box et al. (1973) as the

expected value of a small eigenvalue of DD'.
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Appendix A: Proof of the Double Inequality (2.13)

From (2.5) we have that

DD’ = WBB'W, (A1)

where W is the rxr diagonal matrix whose im diagonal element, w5 is given in (2.1). Then, from

(A.1) and Lemma 2 in Khuri (1986, p. 355) we can write

BB')e . (W?)

!

®min (

(BB') min(w?). (A.2)
1

min(
= €min

+ .

min

eigenvalues of WBB'W are equal to those of B'W2B, then

Let e . (-) denote the smallest positive eigenvalue of a symmetric matrix. Since the nonzero

v _ + a2
enin(WBB'W) =el. (B'W?B)

< ef. (B'Blemax(W?)  (see Khuri 1986, p. 356)  (A.3)

= e i, (BB miax(w?).

The double inequality in (2.13) now follows from (A.1), (A.2), and (A.3).
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Appendix B: The Derivation of the Expected Value in (3.9) and the Upper Bound in (3.10)

) The Expected Value in (3.9)

-

From (3.5) we have that
= 3 7.2 2 =1,2,..m; i=1.2 (B.1)
g“(yli‘ Yopr oo ¥pi) = yui/ Zl(yvi - yi) ., u=l2,..n;i=1.2.... g .
v=

By taking the partial derivatives of g,, with respect to its arguments we get
S 3
(/W3] - vy = Ty /% V=

Yy -yi)yui/w?‘ vFu

where W, is defined ia (2.1). Let ?uj be the nx1 vector

—(98u 9gy Igy \1
Sui (5-—yli e B ) (B.3)
ni
We can then write (3.6) in the form
~ ot
Ay = 0y A (B.4)

where L}i is defined in (3.2). A first-order approximation of AS = (..\su.l) in (3.4) can then be

expressed as
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where

¢ =[en el

From (3.3) and (B.6) we get

E(¢.Q4.) =0, i=1.2....r

-1 71

Var(?iéi) = ?i@{a?, 1=1,2,...,r,

where 0i2 = 6?/3 is the round-off error variance for the il"h response (1=1,2,...,r).

Let us now write the expression in (3.8) as
j=12,....m,

T o~ , - .
'\j bJ (In !n/n)ij

where

where aij is the iil element of éj' From (B.7), (B.9), and the fact that the éi's are statistically

independent we approximately have

The expected value of '\j in (B.8) can then be approximately written as

r
E(A) = ll’[(ln - !n/“)i}: 7 3ij‘?i“3i’]

o 57 N T Y, - ) . .. . e
,-, "-.’\.’-."\,"'.’\.,«.’-.'- O iy Rt S R LRy : Y

ol ke Shal 2k 200 2 o WY
-, - L B’ St e i+ ¢ A A e A\ Sen Ate Sta Sy Bha e gk b ad oo T T T W W T W T W WO W W T“"\-"l'u'J"‘J'.'J‘f'v‘;"'rv‘—-vwv‘

(B.9)

(B.10)
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r o -
=5 o7ac trf olilg - Jn,n)oj j=L2...m. (B.11)
BN A Y
Since the ut-h row of o, cu=1.2 00 1=1.2....r) is of the form given by (B.2) and (B.3). then it is easy
to show that
n-dn/n)o = @ ln - Jo - L H.L i=120 e (B 12)
- 1 I w.s t
1

. . th .
where Hl 1S a symmetric nxn matrix whose («,»)— element is

h;u/ =(y - -V )0y -V, v = 1.2...n01=1.2,. 1.

We note that JoH, =0 fori=1.2....r. It follows that
nfo (ln Jn/n)?-‘:] = (@2)/wh,  i=12e.r.

Formula (3.9) follows from (B.11) and (B.14)

i1 The Upper Bound in (3.10)

From (3.8) we approximately have
Var(Al) = Al ! - WL D7 j=L2.m.
ar(3) = E4[(a8)l, In/mN(38)3;] EGT i=t2em

We note that

9 - - 9
E[a/(a8) i1 - I5/0))(AS ] < E[g}(AS)'(.\S)gJ', j=1.2...m.
18-
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(B.14)

(B.15)

(B.16)
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since (AS) (A AS) (In - Jn/n)(AS) is a positive semidefinite matrix. We also note that

E[ (AS)(AS)a ]‘-’<E{u[(_\s AS)]}2 j=1,2,....m,

(B.17)

since éJ{(AS)'(.\S )é.j is less than or equal to the largest eigenvalue of (AS)’(AS), Lancaster (1969, p.

109).
From (B.4) and (B.17) we approximately have
E[a/(A)(AS)a 2 <E| 3 T (o822
BESL )3 | < 6.4,
u=li=1
n
2
LZ_:IE (¢u| u1 2;2 l)]
r n , 9 .
3 Z iéi) ,  j=12,..,m
i=1 u=l
Note that

Ea/a)? =E [ T (ay. 0t +2 % (ay,)X(Ay .)21 i=1,2,.r
=17 ul ui vl ! rEanente
u=l1 u<v

Since Ay has the uniform distribution U(- 6 8. ) i=1.2,..,r, then for u=1,2,...,n

E(Ayui)2 = U?’ = 5?/3. i=1,2,...,r,

E(ay ) = (9/5)0}, - =120

(B.18)

(B.19)

Furthermore, Ayui and Ayvi are statistically independent for u#v. Formula (B.19) can therefore be
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written as

From (B.2

Thus,

where

Using (B.20), (B.22), and (B.23), inequality (B.18) can be expressed as

B lindh Nkt Sl "k Sad” B el Yt

N AR A e lta g b Ao AN Sun i b wit af b o) .o ‘—v_'vv,v.“r_‘_"m

ryv12 _{9n 4 s
E(a;3))°" = [—5— + n(n-l)]ai, 1=1,2,....1.

) and (B.3) we also have

()
! =1 2 v Yui =12 9 9
L%y = =5 5 (yui yi)yui + 1 u=1.2,....n; i=12,...r (B.21)
W wW. Ww.
i i i
o, )
Z ?ui?ux =T =12 (B.22)

T = [(n-l)wi2 + nyﬂ/w?, 1=1,2,...,r. (B.23)

(B.24)
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since by (3.3),

From (B.15), (B.16), and (B.24) we finally get

r ,
Var(z\j) < [9—5[—1 + n(n-l)] 3 T?d? + 202 5 rirea'izo'% - [:E(/\j')]?, i=1,2,...,m. {B.25)
i=1 i<t

By substituting the rmean of /\j’ from (3.9) in (B.25) we obtain the upper bound given in (3.10).
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Table 1. Data® for the Isomerization of a-Pinene at 189.3° (Example 1)
AR Yo Ya Y4 Y5
a-pinene dipentene ailo-ocimene pvyronene dimer
38.35 7.3 2.3 4 1.75
T6.4 15.6 4.5 T 2.8
63.1 23.1 5.3 1.1 3.8
50.4 32.9 6.0 1.5 9.3
375 42.7 6.0 1.9 12.0
25.9 49.1 5.9 2.2 17.0
14.0 374 5.1 2.6 21.0
4.5 63.1 3.8 2.9 25.7
sSource: Box et al. (1973).
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Table 2. The Matrix BB’ and its Measures of Il Conditioning (Example 1)

T IW YWY

<
[$4)

-.9852
9817
2105
.9868
1.0

"4

. -
'_-)hr-x.;‘-AA -

AR Yo
Y1 1.0 -.9997
vo  -.9997 1.0
BB/ y3 3679 .3805
vy -.9996 .9993
Y5 -.9852 9817
Variance
inflation 224,115 138,163
factors
Condition
number K(B,) = 1258.08
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Table 3. Values of /\J E(/\j’), e and the Eigenvectors of BB’ (Example 1)

l\.‘..-,

SN i 1 2 3 4 5

§ ‘nv'«:‘
i S5

LR

o AS 4.11521 881599 0027773 .0004080 .0000026

E(A:) .0002361 .0004034 .0000732 .0006083 .0000068

b n: 153.018 32.7703 .100552 007451  -.000157 |

: -f Orthnormal 492148 -.059831 109986 -.399853  -.763041
. :\E: eigenvectors -.492328 .045061 -.491572 39444 -.598629
o of BB/ -.206855  -.966695  .14714 -.010939  -.030677
} -491659  .073606 - -.253694  -.82648 073646

Y

-.480505 .233392 .812557 .036687 -.230319
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Table 4. Values® of the Breaking Force and Sensory Response Variables (Example 2)

y1(8) 2% vz s
Breaking force Texture firmness Texture preference Flavor
637.5 4.25 4.25 5.13
1020.8 4.75 4.88 5.38
1529.2 3.73 5.50 5.63
1445.8 6.63 6.25 6.50
345.0 2.75 3.38 3.88
441.7 3.38 3.50 5.00
576.7 4.88 5.13 5.00
3317 5.38 3.15 5.75
380.0 4.63 4.63 3.25
575.0 ' 5.38 5.50 5.63
676.7 5.25 5.38 4.88
845.0 5.75 5.38 6.13
1161.7 6.38 6.00 5.50
585.0 3.13 3.25 5.25
886.7 5.25 5.50 3.75
1115.0 5.50 5.13 5.75
825.0 5.13 5.25 3.88

sSource : Ahmed et al. (1983)

*sThe response values are based on a scale from 1 to 9.
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